Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

No cookies to display.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

Navigation

High Average-Utility Itemsets Mining: A Survey

Applied Intelligence, pp.1-38.

HUIM (High utility itemsets mining) is a sub-division of data mining dealing with the task to obtain promising patterns in the quantitative datasets. A variant of HUIM is to discover the HAUIM (High average-utility itemsets mining) where average-utility measure is used to obtain the utility of itemsets. HAUIM is the refined version of FIM (Frequent itemset mining) problem and has various applications in the field of market basket analysis, bio-informatics, text mining, network traffic analysis, product recommendation and e-learning among others. In this paper, we provide a comprehensive survey of the state-of-the-art methods of HAUIM to mine the HAUIs (High average-utility itemsets) from the static and dynamic datasets since the induction of the HAUIM problem. We discuss the pros and cons of each category of mining approaches in detail. The taxonomy of HAUIM is presented according to the mining approaches. Finally,various extensions, future directions and research opportunities of HAUIM algorithms are discussed.

 

Singh, K., Kumar, R. and Biswas, B., 2021. High average-utility itemsets mining: a survey. Applied Intelligence, pp.1-38. High average-utility itemsets mining: a survey | SpringerLink